行业动态

聚焦行业动态,洞悉行业发展

高温热处理炉使用的注意事项大家了解吗
发布时间:2021-11-08   浏览:3835次

  高温热处理炉使用的注意事项大家了解吗

  高温热处理炉使用的注意事项大家了解吗?今天小编和大家详细介绍下。

  (1)当使用氢气或分解氨时,要先通入氮气,在确保炉中的空气完全被排出时,才能通电升温,以防止打鸣和爆炸。

  (2)对钼丝作加热元件的高温热处理炉,在通电前炉体中应通入保护气体,以防止钼丝氧化而脆断。

  (3)炉门及气体排出口应点明火烧除,以防止氧气进入或氢气排出而发生爆炸危险和煤气中毒危险。

  (4)若电热元件为铁铬铝电阻丝,在升温至1100℃时应停留一段时间(30min左右)再升温,以防止电阻丝表面温度过高而损坏。

  (5)在高温热处理炉升温前和操作中应不时检查气流、水流是否符合要求,以及检查设备、电和炉温的控制仪表是否正常。

  (6)停炉前应先断电,在炉温降到200℃以下时再停气和停水。

  (7)除了因维修必须停外,要避免频繁停炉。高温热处理炉的频繁开停,会造成加热元件易于老化,耐火材料易于碎裂,炉内气氛不纯,炉温容易波动等弊端。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

03 August 2018
真空烧结炉厂家教你如何根据不同环境情况计算抽气时间

真空烧结炉厂家教你如何根据不同环境情况计算抽气时间

  根据真空系统的使用目的而决定所需的真空度和抽气时间,然后选择合适的真空泵。真空烧结炉厂家介绍不同真空范围内的抽气时间计算。   1、大气压-低真空领域的抽气时间计算   这里所指的低真空领域,是指真空度在100 KPa至0.2 KPa,低真空领域真空腔体和泵的连接管内,气体分子是黏性流时,抽气时间可以通过初期压强p1、到达压强p2、抽气速度S和容积V(含配管)来计算。      式中 p1———初期压强(大气压)[Pa];   p2———到达压强[Pa];   t———抽气时间[min];   V———容积[L];   Se———实际抽气速度[L/min]。   真空烧结炉厂家提醒用户,考虑到导管和阀门的瓶颈效应,实际抽气速度大致可以估算为理论抽气速度的80%。   2、中真空领域的抽气时间计算   这里所指的高真空至超高真空领域,是指真空度在200 Pa 至 0.2Pa之间,中真空领域导管内的气体分子,处于黏性流和分子流的中间状态,不能单纯地像低真空或下面第三章节讲解的高真空那样简单地计算。一般情况下,通过两种方式分别计算抽气时间,然后取计算值较大的结果。   真空抽气要考虑的要素:   (1)到达真空度;   (2)抽气速度;   (3)导通率;   (4)实际抽气速度;   (5)气体放出率;   (6)漏率。   3、高真空-超高真空领域的抽气时间计算   在此,八佳真空烧结炉的技术人员表示,这里所指的高真空至超高真空领域,是指真空度在0.2Pa以下,对于高真空领域,要充分考虑容器壁以及容器内物体的气体放出,因此,抽气时间和抽气速度的计算方法和低真空领域不同。      式中 p(t)———到达压强;   Se———实际抽气速度;   Ql———腔体漏气量;   Qg(t)———腔体内部放出气体量;   p0———初期压强。   气体的放出量Qg(t)随着时间t而减少。计算开始时,假定一个抽气时间,根据当时的放气量来求得到达的真空度。如果计算结果p(t)和所需的真空度不一致,则重新假定时间,根据新假设时间的气体放出量再次计算。不断重复,终让p(t)在所需的真空范围内。   真空烧结炉厂家的技术人员表示,高真空领域的抽气时间计算远比低真空领域复杂。真空腔体的内表面经过酒精清洗和150~200℃烘烤处理的两种情况下,后者的气体放出会减少10%左右,因此使用同样的抽气泵所能到达的真空度也会更高一些。   真空腔体内的部件形状和材质也极大地影响到达的真空度和抽气时间。如果使用了树脂类材料,则到达的真空度会比单纯考虑金属表面的气体放出要差2~3个数量级。内部使用螺钉时,螺纹部残留的气体随着抽气时间缓慢放出。为了加速真空烧结炉螺纹部的气体放出,要在螺钉中心穿孔,或在螺纹侧面开一个出气孔。因此,内部构造越复杂,影响真空的因素就越多,要获得高真空,设计上就更需要经验。

12 September 2023
真空熔炼炉结构特点及其应用

真空熔炼炉结构特点及其应用

  真空熔炼炉结构特点及其应用  真空熔炼炉是一种用于高温熔炼金属的设备,其工作原理是在真空环境下对金属进行加热和熔化。由于真空熔炼炉在高温、真空的环境下运行,因此其结构特点和使用寿命受到特别的关注。真空熔炼炉厂家八佳电气在本文将详细介绍真空熔炼炉的结构特点及其在实际生产中的应用。  一、真空熔炼炉的基本结构  真空熔炼炉主要由炉体、加热元件、真空泵、冷却系统、安全保护系统等部分组成。  1.炉体:炉体是真空熔炼炉的主体部分,通常采用耐高温、抗腐蚀的金属材料制造。炉体内部装有加热元件和料筐,料筐用来装载待熔炼的金属。  2.加热元件:加热元件是真空熔炼炉的核心部分,通常采用电热丝或电磁线圈。加热元件放置在炉体内部,与金属直接接触,对金属进行加热和熔化。  3.真空泵:真空泵是用来抽空炉体内的空气,并保持炉体内的真空状态。真空泵通常与炉体相连,通过管道与炉体相通。  4.冷却系统:冷却系统用于将炉体和加热元件在高温工作条件下进行冷却,以延长设备的使用寿命。冷却系统通常包括循环水或冷却液的循环系统。  5.安全保护系统:安全保护系统用于保障操作人员的安全和设备的稳定运行。安全保护系统通常包括安全门、紧急停机按钮等设备。  二、真空熔炼炉的机构特点  1.高温高压环境:真空熔炼炉需要在高温、真空的环境下运行,因此其结构必须能够承受这种极端的工作环境。炉体和加热元件的材料选择和制造工艺直接影响了设备的性能和使用寿命。  2.长效稳定的加热方式:真空熔炼炉的加热元件必须在高温下长时间稳定运行。电热丝和电磁线圈是两种常见的加热元件,但都面临着高温稳定性的挑战。因此,加热元件的材料和结构设计对于设备的性能和使用寿命具有重要影响。  3.效率高的冷却系统:为了确保真空熔炼炉能够长时间稳定运行,效率高的冷却系统是必不可少的。循环水或冷却液的循环系统能够将高温对设备的影响降至低点,延长设备的使用寿命。  4.安全保护系统:真空熔炼炉的安全保护系统对于保障操作人员的安全和设备的稳定运行至关重要。安全门、紧急停机按钮等设备必须能够快速、准确地响应操作人员的指令,确保设备和人员的安全。  三、真空熔炼炉的应用  真空熔炼炉被广泛应用于各类金属的熔炼,如钢铁、有色金属、稀有金属等。其优点包括可在高温、真空环境下进行熔炼,能够获得高质量的金属材料,减少杂质和氧化物的含量等。同时,真空熔炼炉也适用于高纯度金属材料的生产,如超导材料、电池材料等。  真空熔炼炉的结构特点包括高温高压环境、长效稳定的加热方式效率高的冷却系统和安全保护系统。这些特点使得真空熔炼炉成为一种效率高、质量高的金属熔炼设备,在各类金属材料的生产和研发中发挥了重要的作用。随着科技的不断发展,真空熔炼炉在材料制备、新能源等领域的应用前景将更加广阔。