常见问题

聚焦行业动态,洞悉行业发展

使用熔盐电解炉前的烘炉条件
发布时间:2017-10-26   浏览:4006次

  在正式投运熔盐电解炉前,烘干是至关重要的一个环节。常温-350℃时的中低温烘炉可将材料中的游离水的充分排出,材料形成化学结合,达到初期固化。今天小编就介绍下使用熔盐电解炉前的一些烘炉条件。

  烘熔盐电解炉具备的条件

  1.熔盐炉所有的衬里材料砌筑完毕,模具模板扯除完毕,内部卫生清理干净,并自然养护7天以上。

  2.各种附件安装孔或预留孔进行封堵或临时性封堵。炉排下门孔关闭。炉下风道封闭,给风系统风阀关闭。

  3.烘炉使用燃料为0#轻柴油,单台熔盐炉用油量大约5吨,12台约60吨。

  4.由乙方自备储油设备、供油系统、给油泵及管线等临时设施及耗材、并负责安装和操作。

  5.烘炉用的压缩空气,供气母管接至窑炉炉附近,满足5m3/min使用,压缩空气压力0.6-0.8Mpa。母管以后的材料及安装由乙方负责操作。

  6.温度测温由乙方提供烘炉温度监测系统。

  7.乙方提供并安装烘炉使用的连接热烟管道φ273和φ219钢管,材料为Q235-A,长度视现场实际情况而定。

  8.烘炉机使用的220V与380V电源由甲方负责提供、并接至熔盐炉附近烘炉方的开关柜上,满足烘炉机200KW负荷要求,开关柜以后的材料及安装由乙方负责。

  9.业主方协助把烘炉设备吊卸到合适位置,烘炉结束负责吊卸装车。 4.10.为使烘炉时材料中的水分变成蒸汽后能充分的排出,同时避免因烘炉时材料产生的蒸汽在胀力作用下使炉墙出现炸裂或脱落,熔盐炉燃烧室的外部护板的安装必须采取段焊,留出缝隙满足烘炉排汽使用。

  11.在炉管下方制作临时隔墙,材料及安装由乙方负责。

  12.利用熔盐电解炉正式排烟系统排烟。所有膨胀节打开,膨胀指示归零。

IMG_4499.JPG


免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

27 October 2025
气相沉积装备:构筑先进材料世界的精密制造平台

气相沉积装备:构筑先进材料世界的精密制造平台

气相沉积装备:构筑先进材料世界的精密制造平台在纳米科技与智能制造深度融合的今天,薄膜材料作为战略性新兴产业的基石,正以颠覆性技术形态重塑微电子、新能源、航空航天等领域的产业格局。作为实现薄膜材料可控生长的核心装备,气相沉积系统已突破传统制造边界,演变为集物理化学过程控制、多场耦合仿真、智能工艺开发于一体的精密制造平台。一、原理重构:从气相到固相的精密转化现代气相沉积技术通过精确调控气态前驱体的输运、反应与沉积行为,在基底表面构建原子级可控的薄膜结构。其技术路径呈现二元创新特征:物理气相沉积(PVD):依托高能粒子轰击、磁场约束等物理效应,实现靶材原子或分子的定向迁移。典型工艺如磁控溅射通过磁场优化等离子体分布,将沉积速率提升至微米级/小时量级;离子镀膜技术则利用电场加速离子束,显著增强膜层结合力。化学气相沉积(CVD):基于气相前驱体的热解、氧化还原等化学反应,在基底表面原位合成目标材料。原子层沉积(ALD)作为CVD技术的分支,通过自限表面反应实现单原子层精度控制,在3D纳米结构制造领域展现独特优势。二、装备进化:多方面参数空间的工艺解构现代气相沉积系统已形成多方面技术矩阵:压力维度:从常压CVD的开放环境到超高真空PVD(≤10⁻⁹Pa)的洁净空间,压力梯度直接决定反应动力学特性;热场设计:热壁反应器通过整体加热实现温度均匀性≤±1℃,冷壁系统则采用射频感应加热实现局部精准控温;流场优化:层流、湍流及旋转基底等流体控制技术,配合计算流体力学(CFD)仿真,可消除边界层效应对膜厚均匀性的影响;等离子体调控:脉冲偏压、电子回旋共振(ECR)等先进电源技术,使等离子体密度突破10¹²/cm³量级;三、应用图谱:跨领域材料创新的赋能者在战略性新兴产业领域,气相沉积技术正驱动材料性能边界的突破:半导体制造:ALD工艺实现高k介质层(如HfO₂)与金属栅极的无缝集成,支撑5nm以下逻辑芯片持续微缩;新能源:CVD法制备钙钛矿太阳能电池的电子传输层(SnO₂),光电转换效率突破25%大关;极端环境应用:超音速火焰喷涂(HVOF)结合PVD技术,在航空发动机叶片表面构筑热障涂层;-TBCs),耐受温度达1600℃;生物医疗领域:等离子体增强CVD(PECVD)沉积的类金刚石碳膜(DLC),兼具生物相容性与超低摩擦系数,应用于人工关节表面改性;四、技术前沿:智能沉积与绿色制造的融合当前研发热点聚焦三大方向:数字孪生系统:构建沉积过程的多物理场耦合模型,实现工艺参数的闭环优化,开发周期缩短50%以上;新型反应体系:开发基于金属有机框架(MOF)前驱体的低温沉积工艺,突破传统CVD的高温;循环经济模式:研发闭环式气体回收系统,使SiH₄等危险气体利用率提升至99%,推动半导体制造的碳中和转型;五、战略展望:材料基因工程的制造终端随着材料基因组计划的深入实施,气相沉积装备正从单一工艺设备向材料创新平台演进。通过与高通量实验、机器学习等技术的深度融合,未来系统将具备:自主设计沉积工艺路线的能力;实时解析薄膜微观结构-性能映射关系;动态适配柔性电子、量子材料等前沿领域的需求;作为连接基础材料研究与工程应用的枢纽,气相沉积技术的持续突破,不仅将重塑先进制造的产业版图,更将成为支撑新一轮科技的关键基础设施。