行业动态

聚焦行业动态,洞悉行业发展

真空熔炼炉常用的真空计有哪些呢
发布时间:2020-04-01   浏览:3852次

  真空熔炼炉常用的真空计有哪些呢

  真空测量是真空熔炼炉真空技术中的一个重要组成部分。用于测量真空度的仪器称为真空计。

  真空熔炼炉常用的真空计有:热偶真空计电离真空计等。它们的工作原理如下:

  (一)热偶真空计

  真空熔炼炉的热偶真空计由敏感元件、热偶规管和测量仪器组成。热偶规管与被测真空系统相通,外壳为玻璃管,管内有加热丝和热偶丝。热偶丝的冷端和热端温度不同时,由于温差效应,在回路中有热电势产生。如加热丝电压保持恒定,则热偶丝的电势限决于加热丝的温度,而加热丝的温度与被测气体的压强有关。压强低,气体热导率小,被气体带走的热量少,加热丝温度升高,热偶丝的热电势增大;反之,则热电势减少。回路中的热电势用毫伏表测量,表中的毫伏数即反映出真空度的高低。为了保证加热丝的电压稳定,而接入了稳压电源。所以测量仪器是由测量热电势的毫伏表和规管加热丝稳压电源两部分组成。

真空熔炼炉

  (二)电离真空计

  这种真空计主要用于测量高真空度。在低压强气体中,气体分子被电离生成的正离子数与气体压强成正比按照离产生的方法不同,利用热阴极发射电子使气体电离的真空计叫热阴极电离真空计;其中,热阴极电离真空计由热阴极规管和测量仪器组成。测量仪器由规管工作电源、发射电流稳压器、离子流测量放大器等部分组成。热阴极电离规管与被测真空系统相通。真空熔炼炉的热阴极电离规管是一个三极管,管内有阴极、栅及和收集极。收集极电位相对于阴极电负电位;栅极相对于阴极电正电位。当电离规管通电加热后,阴极发射电子,在电子到达栅极的过程中,与气体分子碰撞而产生正离子和电子的电离现象。当发射电流一定时,正离子数日与被测气体压强成正比。正离子被收集极收集后,经测量电路放大,可由批示电表读出所要测量的真空度(箱式炉)。

  (三)复合真空计

  真空烧结炉厂家提示,对低真空和高真空的测量不能用一种真空计来完成,而应采用复合真空计,应用较多的是电离与热偶式复合真空计。它的测量范围为13.33--666.6×10-8Pa。热偶真空计测量(10-1--10-3)×133.32Pa的低真空;电离真空计测量133.32×10-3--666.6×10-8Pa的高真空。复合真空计附有一个热偶规管、一个电离规管,分别接在真空系统上,通过旋钮可分别给两个规管加热,并选择使用。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

16 September 2019
关于真空熔炼炉的热处理工艺

关于真空熔炼炉的热处理工艺

  关于真空熔炼炉的热处理工艺   真空熔炼炉是利用真空感应熔炼法,把坩埚封闭在真空室中,利用电磁感应产生的涡流作为热源,在真空或惰性气体状态下把合金(或是导电材料)原料进行脱气、熔化处理,通过坩埚倾炉系统浇铸,经过中间包在水冷辊上急速凝固后形成薄片,再在水冷盘上进行慢速降温,在拨凿的搅拌下,把合金降到30℃左右,形成大不薄厚均匀的合金薄片的一种熔炼设备。用途磁性材料的熔炼及快速冷凝。它是生产合金(永磁材料)的专用设备,是先进铸片工艺取代传动铸锭工艺的理想替代设备。   关于真空熔炼炉的热处理工艺:   真空熔炼炉的热处理工艺一般包括:加热、保温、冷却三个过程,有时只有加热与冷却两个过程。这些过程都是互相衔接,不可间断。   加热是热处理中重要工序之一,对金属热处理的加热方法很多,早期是采用木炭和煤作为热源,进而使用液体与气体燃料。   要知道,真空熔炼炉的电加热易于控制,且无环境污染;利用这些热源可以的直接加热,也可以通过熔融的盐或是金属,以至浮动粒子进行间接加热。   此外,加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度是保证真空甩带炉热处理质量的主要问题;加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。

30 June 2025
真空炭化炉的气体循环与净化系统

真空炭化炉的气体循环与净化系统

真空炭化炉的气体循环与净化系统在材料科学与工程技术领域,真空炭化炉作为一种先进的热处理设备,通过特定的工艺条件实现了材料在高温、真空环境下的碳化处理,制备出高性能的碳材料。这一过程中,气体循环与净化系统扮演着至关重要的角色,不仅影响碳化效率与产品质量,还直接关系到生产过程中的能耗与环保水平。真空炭化炉厂家洛阳八佳电气将从真空炭化炉的气体循环机制、净化系统构成及其重要性等方面,进行深入探讨。一、真空炭化炉的气体循环机制真空炭化炉的气体循环机制是其效率高运行的核心。在碳化过程中,炉内气氛的控制对于材料的碳化效果至关重要。真空炭化炉通过一系列精密设计的管道与阀门系统,实现了炉内气体的循环与调节。首先,在碳化初期,炉内通常充入惰性气体(如氩气、氮气等),以排除炉内空气,避免材料在高温下发生氧化反应。随着炉温的逐渐升高,材料开始发生热分解,产生一系列气体产物,如二氧化碳、一氧化碳、甲烷等。这些气体在炉内循环流动,部分被燃烧释放热能,部分则通过净化系统处理后重新利用或排放。气体循环不仅有助于维持炉内气氛的稳定,提高碳化效率,还能通过燃烧产生的热能回收,降低能耗。此外,循环气体中的某些成分(如一氧化碳)在特定条件下可作为还原剂,参与材料的碳化反应,进一步提升产品质量。二、真空炭化炉的净化系统构成真空炭化炉的净化系统是其环保性能的关键。该系统主要由除尘装置、气体吸附与脱附装置、废气处理装置等组成,旨在去除碳化过程中产生的有害气体与颗粒物,确保排放达标。1. 除尘装置:碳化过程中产生的颗粒物是主要的污染源之一。除尘装置通过效率高过滤器或布袋除尘器等设备,将炉内气体中的颗粒物截留,减少其对环境的污染。2. 气体吸附与脱附装置:针对碳化过程中产生的有害气体(如酸性气体、挥发性有机物等),净化系统通常采用活性炭、分子筛等吸附材料,对其进行吸附处理。当吸附材料饱和后,通过加热或减压等方式进行脱附,恢复其吸附能力,同时实现有害气体的富集与后续处理。3. 废气处理装置:对于难以直接吸附处理的有害气体,净化系统通常配备废气处理装置,如催化氧化装置、湿式洗涤塔等,通过化学反应将其转化为无害物质后排放。三、气体循环与净化系统的重要性真空炭化炉的气体循环与净化系统不仅关乎碳化效率与产品质量,更直接影响生产过程中的能耗与环保水平。1. 提高碳化效率:通过精确控制炉内气氛与气体循环,可以优化碳化过程,提高碳化效率,缩短生产周期,降低能耗。2. 保障产品质量:稳定的气氛控制与效率高的净化系统能够减少碳化过程中的杂质引入,提高产品的纯度与性能。3. 降低能耗:通过回收循环气体中的热能,以及优化净化系统的运行参数,可以降低生产过程中的能耗,提高能源利用效率。4. 保护环境:效率高的净化系统能够去除碳化过程中产生的有害气体与颗粒物,确保排放达标,减轻对环境的污染。四、未来发展趋势随着科技的不断发展与环保要求的日益严格,真空炭化炉的气体循环与净化系统将朝着更效率高、更环保的方向发展。例如,采用更先进的吸附材料与净化技术,提高有害气体的去除效率;引入智能化控制系统,实现气体循环与净化过程的精确控制与优化;以及开发更加节能的废气处理装置,降低能耗与排放。真空炭化炉的气体循环与净化系统是其效率高运行与环保性能的关键。通过优化气体循环机制与净化系统构成,可以提高碳化效率、保障产品质量、降低能耗与排放,为材料科学与工程技术领域的发展提供有力支持。未来,随着技术的不断进步与环保要求的提升,真空炭化炉的气体循环与净化系统将迎来更加广阔的发展前景。