行业动态

聚焦行业动态,洞悉行业发展

真空烧结炉漏气怎么办
发布时间:2022-04-26   浏览:3092次

  真空烧结炉漏气怎么办

  真空烧结炉在使用中漏气,是常见的一种问题,那我们要如何解决呢?

  说到漏气问题,难的就是排查,一般排查可以在箱体内部倒一些水,然后把门关掉抽真空,然后翻转真空烧结炉箱体如果某个位置有气泡出现的话就是漏气点,有条件的话用氩弧焊焊一下。

真空烧结炉

  还有一些办法是在真空烧结炉内打入氮气在有可能漏的地方放下泡沫若有泡沫连续胀大就说明有缺口;另外一种办法是准备桶洗衣粉水和注射器,拿注射器对你觉得可能漏的地方注射洗衣粉水,仔细观察如果注射处有冒泡点证明此点为漏点。

  解决办法:如果真空烧结炉箱体门密封稍微有点不紧的话只要真空干燥箱内负压达到一定程度也是没问题的。先在抽一次真空,看看负压表能不能到一个标准大气压,如果在抽气过程中指针变化缓慢,试着将门往里推看看能不能抽到真空状态,如果可以抽真空,就只要把门口在旋紧几圈就好了。如果用手推着门还不行的话。就很有可能是内胆上固定加热块的螺丝有松动,需要把后挡板拆卸下来(拆卸过程中请带好手套跟口罩,一般的保温面采用硅酸盐类物质这个东西接触到皮肤会很不舒服)然后找到加热原件后把固定加热块的固定螺丝重新紧一下。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

19 June 2023
真空速凝炉的作业流程分析

真空速凝炉的作业流程分析

  真空速凝炉的作业流程分析  真空速凝炉主要用于制备高纯度、高质量的金属材料和合金材料,其作业流程包括以下几个步骤:  1.准备工作:首先需要将待制备的金属材料或合金材料切割成适当的形状和尺寸,并对原料进行表面处理,以确保其表面没有油污和氧化物等杂质。然后将其放入真空速凝炉内的石英坩埚或钼坩埚中。  2.真空处理:将装有原料的坩埚放入真空速凝炉中,并进行真空处理,以去除坩埚内部的氧气、水分、氮气等杂质,使得反应环境达到较高的真空度。真空度可以根据操作要求设定,但一般要求在10^-3 Pa以下。  3.加热熔融:在真空性环境下,对装有原料的坩埚进行加热,使其熔化。加热方式常采用电阻加热或电子束加热等方式,升温速度一般控制在10-100°C/min之间。加热过程中,还需要根据需要向炉膛中注入惰性气体,以保护炉内气氛和材料。  4.冷却凝固:在达到所需的熔点后,停止加热,让坩埚中的液态金属材料逐渐冷却。在冷却过程中,需要控制冷却速度和冷却方式,以确保形成高质量和高纯度的金属材料或合金材料。  5.取出样品:金属材料或合金材料凝固后,可以将坩埚从真空速凝炉中取出,并进行后续处理,例如制备板材、棒材、薄膜等。  需要注意的是,在使用真空速凝炉进行金属材料和合金材料制备时,应该注意选择合适的工艺参数和加工流程,以获取好的品质材料。

19 September 2022
石墨化炉在针状焦材料发展中有不可缺少的作用

石墨化炉在针状焦材料发展中有不可缺少的作用

  石墨化炉在针状焦材料发展中有不可缺少的作用  石墨化炉热处理过的针状焦作为一种新型炭材料,因其易于石墨化、电导率高、价格低廉、灰分低等优异特性,逐渐成为一种优质的锂离子电池负极材料wu,且已占据日本近60%的市场.近期,国内在针状焦的生产技术上取得了较大突破,实现了规模生产,但其用作锂离子电池负极材料的研究较少.  一般软炭(如沥青焦、石油焦等)经过2500?3000℃的石墨化炉热处理后,会转化为石墨结构,但该过程极其复杂,既涉及石墨微晶在径/轴向的有序排列、晶界的消失、晶体界面处C-C六圆环的形成、晶体的生长,还涉及石墨层边界处不饱和碳原子的催化反应、碳原子或气体分子的热震动、石墨微晶的各向异性特性、石墨层层间的范德华力等微观热力学或动力学行为.目前,热处理温度与材料石墨微晶参数之间的内在关系巳得到系统研究,而石墨化机理的基础研究较少.本工作以煤系针状焦为原料,在分析热处理温度对针状焦微结构的影响规律的基础上,深入研究了针状焦的石墨化机理及其用作锂离子电池负极材料的电极性能和储锂机制.  将煤系针状焦机械粉碎后,用。45岬筛网进行筛分,置入炭化炉,先以5°C/min的升温速率分别升温至700P、1000°C,1500°C,并标记为NC700、NC1000、NC1500;格样品置于高温石墨化炉,先以15-C/min的升温速率升至1500℃,再以7°C/min的升温速率升至2250℃、2800℃并恒温30tnin,降至室温后得到石墨化样品,相应标记为NC2250、NC2800。  在1500-2250℃的高温石墨化炉石墨化过程中,体系获得更大的能量,在表面能以及大兀健的作用下,石墨微晶沿轴向发生平行排列;同时,体系中碳原子的热震动频率增大,平行于平面网格方向的振幅增大,使得晶体平面上的位错线和晶界逐渐减少,并放出潜热。  随着石墨化炉石墨化温度的继续升高,碳的蒸发率以指数式上升,这时体系中充满各种碳原子或气体分子,且石墨微晶在径向的间距接近分子水平;在石墨层边缘碳的自催化以及界面能的推动力作用下,各种游离的碳原子与相邻石墨微晶的边缘碳发生反应,形成C-C六圆环;在范德华力作用下,石墨层的“褶皱”消失,并趋向平面结构,终形成三维有序的石墨化针状焦。针状焦经过2800℃的高温热处理后,终逐步转化成三维有序的石墨结构。